Bayesian

Nominal Regression in STAN

I was talking to a colleague about modeling nominal outcomes in STAN, and wrote up this example. Just put it here in case it’s helpful for anyone (probably myself in the future).

What to Do If Measurement Invariance Does Not Hold? Let's Look at the Practical Significance

Measurement invariance---that a test measures the same construct in the same way across subgroups---needs to hold for subgroup comparisons to be meaningful. There has been tremendous growth in measurement invariance research in the past decade. …

Using cmdstanr in SimDesign

library(SimDesign) library(cmdstanr) [Update: Use parallel computing with two cores.] Adapted from https://cran.r-project.org/web/packages/SimDesign/vignettes/SimDesign-intro.html See https://mc-stan.org/cmdstanr/articles/cmdstanr.html for using cmdstanr Design <- createDesign(sample_size = c(30, 60, 120, 240), distribution = c('norm', 'chi')) Design ## # A tibble: 8 × 2 ## sample_size distribution ## <dbl> <chr> ## 1 30 norm ## 2 60 norm ## 3 120 norm ## 4 240 norm ## 5 30 chi ## 6 60 chi ## 7 120 chi ## 8 240 chi Generate <- function(condition, fixed_objects = NULL) { N <- condition$sample_size dist <- condition$distribution if(dist == 'norm'){ dat <- rnorm(N, mean = 3) } else if(dist == 'chi'){ dat <- rchisq(N, df = 3) } dat } Define Bayes estimator of the mean with STAN